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On the basis of the generalized Gibbs energy of mixing Gi (which is the sum of the Gibbs energy for zero
shear and the energy the system stores in steady flow) phase diagrams were calculated as a function of shear
rate + for ternary model blends. This modelling uses simple equations for the description of the stagnant
systems (Flory–Huggins) and for the contributions resulting from flow. Surface and alignment effects are
neglected. A new procedure, which does not require the derivatives of G+with respect to composition, was
used to that end. Choosing typical values for the binary interaction parameters and molar masses, four
classes of ternary systems were studied in greater detail. Under equilibrium conditions, with two of them
there only exist one-phase and two-phase regions in the temperature range of interest. At least one three-
phase domain occurs with the other two types of ternary mixtures. In addition to all effects observed for
binary systems, the following new phenomena were calculated: (i) twofold disappearance of closed loops of
immiscibility and twofold reappearance; (ii) creation and annihilation of three phase areas; and (iii) creation
and annihilation of islands of homogeneity in the centre of the ternary phase diagram. Q 1997 Elsevier
Science Ltd.
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INTRODUCTION

The influenceof flowon the phase behaviour of polymer
blendshas been a topic of research for many yearsl-lO.It
is also of great technical interest, the most prominent
example being the extrusion process. Theoretical con-
siderations of the authors have so far dealt with strictly

11The outcome of thesecalculationsare inbinary blends .
very good qualitative agreement12with related experi-
mental results. In view of the fact that polymers in
technical applications nearly always contain additives
and normally exhibitbroad molar mass distributions,we
extended our theoretical approach—which is again
based on a generalization of the Gibbs energy of
mixing—to ternary polymer blends.

THEORETICAL BACKGROUND

The generalized Gibbs energy of a flowing system, G7,
differsfrom GZ,that of the corresponding stagnant one.
Calling the differenceEi, one can write

G? = G=+ E+ (1)

If Et is sufficientlysmallcompared with G,, the ordinary
tools of thermodynamics can be applied to G+.

G, contains the entire information required for the
description of systems at rest. All contributions due to
flow fieldsare incorporated into Ei; the most important
of them are:

(a) deformation of molecules(as manifestedin rheology,
e.g. changes in the number of entanglements);

* To whom correspondence should be addressed

(b) orientation of moleculesor of parts of them;
(c) orientation at larger length scales;
(d) interracial effects;
(e) changes in the contact statistics of segments.

In order to perform model calculationson the basis of
the above relation, theoretical expressions for the two
constituents of G$are required. Sinceit is the aim of the
presentpaper to study in a qualitativemanner whichflow
inducedchangesin the phase behaviourof blendsone can
expect,theequationsare chosenas simpleas possible.This
impliesa minimizationof the numbers of parameters and
keeps the modellingmanageable.Naturally, these simpli-
fications limit the results to qualitative statements, it
appears unlikelythat real systemscan be described in a
quantitative manner by such simpleequations.

For GZ it is—as usual—assumed that the Flory–
Huggins relation suffices for the modelling of the
thermodynamics of the stagnant systems. In the case of
E+we assumethat changesin the contact statistics(e)are
negligible. Interracial phenomena (d) are expected to
become particularly important with highly disperse
systems (e.g. formation of ‘string phases’’3); they
should, however, be negligibleas long as one does not
transpass the limits of homogeneity. Orientation at
larger lengths scales (c)—like the alignment of micro-
structure in systems containing block copolymers14—
are presently also ruled out. Orientations of macro-
molecules(b) should become dominant for highly dilute
polymer solutions15, whereas they appear of minor
importance here. For the polymer blends of present
interest, molecular deformations (a) are postulated to be
the decisivecontribution to Ei.
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i
For this reason the term 1$ was already in the past

approximated by the stored energy E, 16(the energy the
system takes up during the attainment of steady flow)
and equation (1) can be rewritten as

G? = G=+ E, (2)

The above procedure has so far proven to be very
suitable in the qualitative description of experimental
observation of shear induced changes in the phase
separation behaviour of polymer solutions17and of
polymer blends12.

Gibbs energy of mixing of the stagnant system
The Gibbs energy of mixingfor zero shear conditions

G, is accessiblevia the Flory–Huggins equation

where vi is the volume fraction of component i, K is the
number of components (for the actual ternary systems
K = 3), and gij is the interaction parameter between
components i and j.

Ni the number of segmentsper moleculeof component
i, is calculatedby dividingthe molar volume Viby V~,the
molar volume of the segment.

Stored energy
In mixtures containing polymers considerable

amounts of energy can be stored as compared with
mixtures of low molar mass components. In the melt the
chains between entanglement points are stretched as the
liquid flows and energy can be regained upon the
relaxation of chains into their equilibrium dimensions
after the cessationof shear. Since—atconstant composi-
tion and shear rate ~—the number of entanglementsper
chain increases with molar mass, the stored energy E,
also becomes larger as long as the shear rates are chosen
sufficientlylow so that one does not leave the region of
Newtonian flow behaviour; within this range, E, is
proportional to ~z. As the shear rates exceedthe inverse
of the characteristic viscometric relaxation time, how-
ever, disentanglementprocessesstart and the number of
entanglements decreases18.This fact implies that the
stored energymay diminishas ~ is raised to high enough
shear rates.

The relations used to calculate the stored energy .&
have been given in ref. 11. Here only the indispensable
ones are brieflyrecalled.

~ = J“,(@)((v)i)21(?7)$l-2d* (4)

where d* = –(~ln q/Oln J), V~is the molar volume of
the segment, J: is the steady state shear compliance, q
is the viscosity,~ is the shear rate, and ( ) mark quantities
of the mixture.

The shear rate dependenceof q is accessibleby means
of Graessley’s equation18. The longest viscometric
relaxation time To,contained in this relation, is oftenll

19The steady statereplaced by the Rouse relaxation time .
shear compliance of the pure components (indicatedby
the index i ) are related to T. and the zero-shearviscosity
qOby

(5)

The mixing rules for q. and J: from ref. 20 can be
extended for ternary systemsin the followingmanner

(6)

The expressionsare based on the exponential relation
between q. and the molar mass M

The temperature dependenceof q. can be represented
by the Arrhenius equation, as long as one is not too close
to the glass transition of the polymer

(9)

E+ represents the activation energy of Viscousflow and
TC, the critical temperature, is chosen as the reference
temperature for the present purposes.

Calculation procedure
In viewof the fact that it often turns out very difficult

or even impossible to express Es as a function of
composition in a closed analytical form, the standard
thermodynamic procedure is left. Instead of calculating
the first derivatives of the Gibbs energy of mixing
yieldingbinodal lines(equalityof the chemicalpotentials
of the components in the coexisting phases) and the
second derivatives, required for the calculation of
spinodal lines, the present approach utilizesthe thermo-
dynamiccriterion for equilibriumin a directmanner. It is
exclusivelybased on the reduction of the (generalized)
Gibbs energy associated with spontaneous processes in
closed systems. A detailed discussion of the applied
calculation method is given in ref. 21. For the computa-
tion of the entire phase diagram it turns out expedient to
start with the calculation of the spinodal line.

Spinodal lines. To separate the unstable from the
metastableplus stable region of a binary system, the con-
centration axis (in the actual case the volume fraction p
of one component) is divided into n sections.At a given
overall composition P“’ the distance from one point to
the next—which defines the accuracy with which the
spinodal condition can be determined—is therefore
1/n. The stabilityof a homogeneousmixture (information
referring to that state is marked by the superscript horn)
is then examined by comparing QGhOmwith AGdem,the
Gibbs energy of mixing into a hypothetical state for
which two phases coexist that differ in composition
from P“’ only marginally [namely by +1/(2n)]. In case
AGdemi5 less than AGhornthe system k unstable, eke it

is either metastable or stable.
For the ternary systems of present interest the

procedure is somewhat more complicated. In this case
the scanning pattern inside the ternary diagram consists
of (n – 2)(n – 1)/2 points (for given PI the second
variable can only assume values between Oand 1– PI).
The binary sub-systemsneed not be treated separately,as
long as n is chosen sufficiently large; under these
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Figure 1 Spinodal conditions for the ternary model blend A 75/B
150/C 200 (the numbers give the molar masses in kgmol-’) in the
temperature interval from 380 to 450K (a) at zero-shear conditions and
(b) for the given shear rate. The full circles of (a) indicate the critical
points. The binary interaction parameters are fixed by the condition
T. = 400K and equation (15)

conditions the number of mixturesfor whichcalculations
have to be performed equals approximately n2/2.

In order to check the thermodynamic stability of a
certain mixture by analogy to the procedure outlined
above for binary systems, it is necessary to vary the
direction of the secant in the ternary diagram. Marking
the two phases of slightly different composition by
the superscripts(1)and (2), respectively,and introducing
~(l) for the fraction of the total volume that is occupied
by phase 1, the following relation expresses the mass
balance for a systemof K components:

In order to discover whether a certain mixture is
represented by a point inside the spinodal area of the
ternary diagram, the secant of length l/n must be found
for which AGdemis minimum; if this value is less than
AGhOm,the system is unstable. In order to find this
minimum, the secant is rotated around the given overall
composition. The Vi values of the different two phase
situations are fixedby adding the followingincrementsto
p?’ in the case of phase 1 and subtracting them in the case
of phase 2

(11)

(12)

(13)

a, the angle between the line for constant p2 and the
secant, can assume values between O and T, since a
rotation of a + fi is identicalwith a rotation of a and an
exchange of the two phases. The value of a for which
AGd’mreaches its minimum has to be determined by an
iteration process. —

The calculation uses AG, the Gibbs energy of mixing
for one mol of segments, the size of which is defined by
V,, the molar volume of the segments. Connecting the
AGhOmvalues of the two phases of the demixed system,
i.e. constructing a secant to AG(p), and reading the
value of this secant at the overall composition yields
AGdemaccording to:

AGdem= #’)AGhOmtlJ+ (1 – qb(l))AGh0m(2) (14)

If AGdemis less than AGhOmfor at least one a value,
the overall composition lies within the unstable area,
since the systemcannot resist fluctuations in concentra-
tion (no energy barrier for phase separation). In the
oppositecase the mixture is stable, or at least metastable
(energybarrier for demixing).Checking all points inside
the phase diagram yields the entire unstable area, and
thus the spinodal line as its boundary, which can be
easily visualizedby deleting all points of instability that
are totally surrounded by neighbors which also lie
within the spinodal region.

The current calculationswere typicallyperformed for
n = 200 on an IBM RISC 6000computer by means of a
program written in Pascal. The representative time
required to obtain the spinodal for a flowing ternary
polymer blend amounts to 2h.

Tie lines. The first step of the calculation consists in
the selection of the overall composition of the system
(p?’ and Y$). In order to guarantee that a tie line exists,
it is checkedthat the chosenpoint lieswithin the unstable
area of the phase diagram. For a ternary system and
known p~a the tie lines are fully described by three
parameters. In the present case these three parameters
are two volume fractions of phase 1 (p\l~ and p~’~)and
the fragment of the total volume that N occupied by
phase 1 (P(l)). The composition of phase 2 can then be
calculated according to equation (10).

Bymeans of a Simplexfit, that can be performed on an
ordinary personal computer within a few seconds, it is
tested for a given overall composition which values of
the three parameters p{’), p~l), and ~(’) yield the largest
reduction in the Gibbs energy upon demixing(minimum
in AGdem).This procedure is analogous to the one used
in the calculationof spinodals,exceptfor the fact that the
length of the line connecting two points on the surface
AGhOm(pl,P3) is no longer givenby l/n but treated as a
variable. As can be easily visualized, the secant that
fulfilsthe aboveminimumcondition is identical to the tie
line and part of the tangential plane to AGhOm(pl,93)
which fulfilsthe condition that the chemicalpotentials of
the components are identical in the coexisting phases.
The desired binodal line is obtained by computing a
sufficientnumber of tie lines for different overall com-
positions and connecting their endpoints.

RESULTS

In the assessment of the results presented in the
following, one has to keep in mind that interface and
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Figure 2 Phase diagrams of the model blend A 100/B25/C 100 (the
numbers give the molar mass in kgmol-’) at 400 K. (a) shows the island
of immiscibility (unstable area) under equilibrium conditions; the
binary interaction parameters are indicated at the edges of the ternary
diagram. The variation of the extent of the unstable area with shear rate
is given in (b) for the interval from Oto 20 S–l; the part of the diagram
which is shown in (b) is indicated in (a) by the broken line

alignmenteffectswerenot incorporated in the modelling.
This means that phenomena caused by these effectsare
not covered by the present approach. The values of the
parameters used in the following calculations are
10-4m3mol-l for V,, 1000kgm-3 for the density of
the polymers (required for the evaluation of the molar
volumesfrom the molar masses),400K for T, 10–3Pas
for KM[equation (8)]and 30kJmol-1 for E+ [equation
(9)].Parameters differingfrom these valuesare indicated
in the graphs.

In the first ternary example shown in Figure 1 the
subsystemsconsistof the binary systemsof the preceding
paper22 on binary blends. All three molar masses are
different. For the temperature dependence of the three
binary interaction parameters the following
selected

f?ij = 17ijc + 3 x 10-6(T – ‘c)

where

‘ijc”o’(*+ik)
and is the critical interaction parameter for
subsystemconsistingof components i andj.

relation is

(15)

the binary

Fi&re la shows- the sp;nodal conditions for the
stagnant blend. The pure component C 200 is shown in
the foreground, A 75 and B 150 are situated in the
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background. Since the critical composition is always
situated closer to the lower molar mass component, the
largest homogeneous area is located in the corner of’
C200, which is the component with the highest molar
mass. The critical temperature of all binary subsystemsis
fixedat 400K. The interaction parameters resultingfrom
that assumption and from the value of 3 x 10-6 chosen
for the proportionality constant of equation (15) remain
so low within the temperature range of interest, that the
three miscibilitygaps do not coalesce.

The application of a shear rate of 0.2S-l changes the
phase diagrams of the three subsystemsin a verydifferent
way. The subsystem with the lowest molar mass
components A 75/B150 shows shear induced mixing
only, i.e. the homogeneous area expands as the system
flows. The reason is that the characteristic viscometric
relaxation times of the mixtures remain relativelysmall,
and the viscosityshowsNewtonian behaviour. Therefore
the stored energy increases monotonously with the
content of B and the miscibilityis enhanced.

For the second subsystem A75/C 200 the effect of’
shear induced mixing is more pronounced than for the
first. The minimum of the main miscibility gap of the
sheared blend assumes the highest values of the three
subsystems.But simultaneouslya closed miscibilitygap
is created at 380K to 395K. Here the relaxation times
are so long that the flow behaviour becomes non-
Newtonian at the lowertemperatures of Figure 1 and one
additionally observes shear induced demixing (the
flowing blend is two phase where the stagnant blend is
homogeneous).

For B 150/C200 the relaxation times are so long even
at the highertemperatures that shear induced demixingis
observed at all temperatures around TC.At 0.2S–l the
island of immiscibilityhas already merged with the main
miscibilitygap. All phenomena resulting for the present
ternary systemare identicalwith that already calculated
for binary blends, i.e. no new shear-inducedphenomena
show UP.

The second ternary blend (Figure 2) is symmetricalin
the sensethat the molar massesof A and C are equal, and
so are the interaction parameters of these two com-
ponents with B. In case of sufficientlylarge negative
values of gAc and suitable gABand gBc, the stagnant
blend exhibits a closed miscibilitygap.

Figure 2a shows the entire phase diagram (in terms of’
the spinodal area), whereas Figure 2b only presents the
corner close to the pure component B. Equilibrium
diagrams like this have been observed for a ternary
mixture of polystyrene,poly(2-chlorostyrene)and poly-
cyclohexylacrylate23.According to the present calcula-
tions the phase behaviour of such types of blends should
be verypronouncedlyinfluencedby shear. At small~, the
miscibilitygap shrinks until the shear induced mixing is
so strong that the components become completely
miscible.At somewhat higher ~ values the gap emerges
again and grows much larger than the equilibrium
unstable area. Increasing ~ still further leads to a
second range of shear induced mixing. Where the
interaction parameters are chosen properly, as in the
present case, the island of immiscibility disappears a
second time. Finally, at still higher shear rates the gap
emergesagain and approaches the shape of the unstable
area of the stagnant blend again. The successionof shear
effectsis in perfect agreement with the results for binary
blendsll.
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Figure3 Phase diagram of the model blend A 100/B 50/C 100at 400K and the given shear rates. The tie lines, spinodal line and the critical points are
also given. The three phase areas are indicated by shading

Wenowturn to mixtureswhichare againsymmetrical—
like the previous one—the molar mass of B is, however,
doubled and the value of the interaction parameters of
components A and C with B is raised; furthermore, A
and C are no longer compatible, i.e. all constituents of
the ternary system exhibit a much lower mixing ten-
dency. Figure 3 shows an example of the entire phase
diagram (includingtie-linesand binodals) calculated for

miscibilitygaps in the equilibrium situation are just big
enough to leave areas of homogeneity between them.

From Figure 3a itcan be seen that four critical points
and a three phase area—located inside the A–C
miscibilitygap—are calculated for the stagnant ternary
blend. The effects of shear are shown in Figure 3b to
Figure 3e, this time—as with the next example—not
dealingwith low shear rates where shear-inducedmixing

suck blends; par~meters are chosen so that the three occurs; since no new phenomena result.
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Figure 4 Spinodal and tie lines in the phase diagram for the modal
blend A 100/B 50/C 100 at 400K for zero shear (a) and at 6s “ (b)

(+= 5 S-l) the influenceof shear is most prominent on
the side of the higher molar mass components of the
ternary diagram. Therefore the unstable area is par-
ticularly increasedwhere the unstable area of A/C comes
close to the two other miscibilitygaps. This means the
spinodal areas of the three subsystemscoalesce in this
area so that the critical points disappear and one large
unstable area is created.

With increasing ~ the area of shear induced demixing
shifts towards the lowermolar mass component B as can
be seen in Figure 3c; this finding is in accord with the
results of calculations for binary polymer blendsll. The
enhancementof incompatibilityis so strong that two new
three phase areas are created and—associated there-
with—two new critical points.

Upon a further augmentation of ~ (cf. Figure 3d) the
unstable areas coalesceat all three regions in which the
three equilibrium miscibility gaps come close together.
So again one large two-phase area is created which now,
however, surrounds an island of stability. All critical
points have disappeared and flowing blends with
compositions located in the stable area in the centre of
the ternary diagram becomehomogeneouswhen sheared
at the given rate.

The effects resulting from still higher ~ values are
shown in Figure 3e. In this case the region of shear
induced demixing has shifted so far towards the com-
ponent B that only the unstable areas A/B and B/C
coalesce, whereas that at A/C remains apart. So the
flowing blend exhibits two unstable areas with 3 three
phase areas and 4 critical points.

The sequence of phase diagrams presented in Figures

3b–e demonstrate some new phenomena, which cannot
be observed with binary blends, due to the absence of
three phase areas. One is the creation of three phase
areas, another the production of a homogeneous region
within a demixed area by shear.

In the next example the opposite observation is
discussed, namely the disappearance of an island of
homogeneityand of three-phase areas resulting from the
application of shear. For these calculations the com-
ponent of the ternary blend and the symmetryare chosen
identical with the previous example. However, AB and
BC are postulated to be somewhat less and AC
somewhat more compatible. Figure 4 shows the phase
diagrams obtained under these conditions for the
stagnant and for the flowingsystem.

Even in the stagnant blend there is only one large
unstable area. The equilibrium situation for the actual
blend isvery similarto that of the flowingblend of Figure
3d: a stable island in the centre, 3 three phase areas and 6
two phase areas. Figure 4b demonstrates the effect of a
shear rate of 6S–l: the unstable area increases, the
metastable island is reduced, but still exists,whereas the
stable island vanishes.A large three phase area is formed
covering the region of the island and the 3 equilibrium
three phase areas. The effectsof shear are in the actual
example just opposite to the previous one, since the
number of three phase areas decreases and an island of
homogeneitydisappears in the flowingpolymer blend.

OUTLOOK

The extensionof the theoretical approach starting from a
generalizedGibbs energy to ternary polymer blends has
produced a multitude of new effects. These numerical
computations were performed according to a new
method—which does not require fitting functions for
the stored energy—and consequently does not suffer
from any inadequacies resulting from imprecise fitting
functions. The calculation of the phase diagrams of
ternary polymer blends constitutes the basis for an
extensionof the present computations to polymer blends
containingadditives,e.g. blendsof two homopolymersA
and B and a copolymerA–B, or even C–D. The effectof
polydispersity can also be modelled by mixing a
homopolymer A with two samples of homopolymer B
differingin molar mass.
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